A plastic pipe has an outside diameter of .65625 inches.  The minimum bend radius allowed is 5 inches. If a 100 foot length is coiled, as tightly as allowed, in a flat spiral, what will be the final diameter?  The 100 foot length of pipe has a capacity of .96 gallons.  How much pipe would be required to form a spiral six feet in diamter and how much water would that hold?  (The actual diameter of the pipe is only .625, however the problem allows a little more because a perfectly tight spiral is not likely achievable).
in Calculus Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

The equation of a spiral in polar coordinates has the general form r=A+Bø, where A is the starting radius of the spiral and B is a factor governing the growth of the spiral outwards. For example, if B=0, there is no outward growth and we just have a circle of radius A. A horizontal line length A represents the initial r, and the angle ø is the angle between r and this horizontal line. So r increases in length as ø increases (this angle is measured in radians where 2(pi) radians = 360 degrees, so 1 radian is 180/(pi)=57.3 degrees approximately.) If B=1/2 and A=5", for example, the minimum radius would be 5" when ø=0. When ø=2(pi) (360 degrees), r=5+(pi), or about 8.14". This angle would bring r back to the horizontal position, but it would be 8.14" instead of the initial 5". At ø=720 degrees, the horizontal line would increase by a further 3.14". Everywhere on the spiral the spiral arms would be 3.14" apart.

What would B be if the spiral arms were 0.65625" apart? 2(pi)B=0.65625, so B=0.65625/(2(pi))=0.10445". The equation of the spiral is r=5+0.10445ø. To calculate the length of the spiral we have two possible ways: an approximate value based on the similarity between concentric circles and a spiral; or an accurate value obtainable through calculus.

The approximate way is to add together the circumferences of the concentric circles: L=2(pi)(5+(5+0.65625)+...+(5+0.65625N)) where L=spiral length and N is the number of turns. L=2(pi)(5N+0.65625S) where S=0+1+2+3+...+(N-1)=N(N-1)/2. This formula arises from the fact that the first and last terms (0, N-1) the second and penultimate terms (1, N-2) and so on add up to N-1. So, for example, if N were 10 we would have (0+9)+(1+8)+(2+7)+(3+6)+(4+5)=5*9=45=10*9/2. If N were 5 we would have 0+1+2+3+4=10=(0+4)+(1+3)+2=5*4/2.

L=12*100 inches. L=1200=2(pi)(5N+0.65625N(N-1)/2)=(pi)N(10+0.65625(N-1))=(pi)N(9.34375+0.65625N).

If the external radius is r1 and the internal radius is r then the thickness of the spiral is r1-r and since 0.65625 is the gap between the spiral arms N=(r1-r)/0.65625. N is an integer, but, since it is unlikely that this equation would actually produce an integer we would settle for the nearest integer.

If we solve this equation for N, we can deduce the external radius and diameter of the spiral:

N(9.34375+0.65625N)=1200/(pi)=381.97; 0.65625N^2+9.34375N-381.97=0 and N=(-9.34375+sqrt(1089.98))/1.3125=18 (nearest integer). This means that there are 18 turns of the spiral to make the total length about 100 feet.

If X is the final external diameter of the coiled pipe and the internal radius is 5" (the minimum allowable) then X/2 is the external radius, so N=((X/2)-5)/0.65625. We found N=18 so we can find X:

X=2*(0.65625*18+5)=33.625in.

Solution using calculus

Using calculus, we can work out the relationship between the length of the spiral and other parameters. We start with any polar equation r(ø) and a picture: draw a line representing a general value of r. At a small angle dø to this line we draw another line a little bit longer, length r+dr. Now we join the ends together to make a narrow-angled triangle AOB where angle AOB=dø and AB=ds, the small section of the curve. In the triangle AO is length r and BO is length r+dr. If we mark the point C along BO so that CO is length r, the same as AO, we have an isosceles triangle COA. Because the apex angle is small, CA=rdø, the length of the arc of the sector. In triangle ABC, CB=dr, AB=ds and CA=rdø. By Pythagoras, AB^2=CB^2+CA^2, that is, ds^2=dr^2+r^2dø^2, because angle BCA is a right angle as dø tends to zero. The length of the curve is the result of adding the tiny ds values together between limits of r or ø. We can write ds=sqrt(dr^2+r^2dø^2). If we divide both sides by dr, we get ds/dr=sqrt(1+(rdø/dr)^2) so s=integral(sqrt(1+(rdø/dr)^2)dr, where s is the length of the curve. The integral is definite if we define the limits of r.

For our spiral we have r=A+Bø, making ø=(r-A)/B and B=p/(2(pi)), where p is the diameter of the pipe=0.65625", so we can substitute for ø in the integral and the limits for r are A to X/2, where A is the inner radius (A=5") and X/2 is the outer radius. dø/dr=2(pi)/p, a constant=9.57 approx. s=integral(sqrt(1+(2(pi)r/p)^2)dr) between limits r=A to X/2. After the integral is calculated, we solve for X putting s=1200".

The expression (2(pi)r/p)^2 is large compared to 1, so s=integral((2(pi)r/p)dr) approximately and s=[(pi)r^2/p] (r=A to X/2); therefore, since we know s=1200, we can write ((pi)/p)(X^2/4-A^2)=1200. Therefore X=2sqrt(1200p/(pi))+A^2)=33.21". Compare this answer with the one we got before and we can see they are close. [We could get a formal solution to the integral, using hyperbolic trigonometric or other logarithmic functions, but such a solution would make it very difficult or tedious to solve for X, since X would appear in logarithmic expressions and in other expressions making it difficult or impossible to isolate X. For example, the next term in the expansion of the integral would be (p/(4(pi))ln(X/2A), having a value of about 0.06. It is anticipated, therefore, that an approximation would be sufficient in this problem with the given figures.]

We can feel justified in using the formula for finding the length of pipe, L, when X=6'=72":

L=((pi)/p)(1296-25)=6084.52"=507' approximately. This length of pipe would hold 507/100*0.96 gallons=4.87 gallons.

 

 

 

by Top Rated User (1.1m points)

Related questions

1 answer
asked May 16, 2012 in Fraction Problems by anonymous | 834 views
1 answer
0 answers
0 answers
asked Mar 25, 2013 in Calculus Answers by anonymous | 515 views
0 answers
1 answer
asked Jan 29, 2013 in Calculus Answers by anonymous | 531 views
1 answer
1 answer
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!

Most popular tags

algebra problems solving equations word problems calculating percentages math problem geometry problems calculus problems math fraction problems trigonometry problems rounding numbers simplifying expressions solve for x order of operations probability algebra pre algebra problems word problem evaluate the expression slope intercept form statistics problems factoring polynomials solving inequalities 6th grade math how to find y intercept equation of a line sequences and series algebra 2 problems logarithmic equations solving systems of equations by substitution dividing fractions greatest common factor square roots geometric shapes graphing linear equations long division solving systems of equations least to greatest dividing decimals substitution method proving trigonometric identities least common multiple factoring polynomials ratio and proportion trig identity precalculus problems standard form of an equation solving equations with fractions http: mathhomeworkanswers.org ask# function of x calculus slope of a line through 2 points algebraic expressions solving equations with variables on both sides college algebra domain of a function solving systems of equations by elimination differential equation algebra word problems distributive property solving quadratic equations perimeter of a rectangle trinomial factoring factors of a number fraction word problems slope of a line limit of a function greater than or less than geometry division fractions how to find x intercept differentiation exponents 8th grade math simplifying fractions geometry 10th grade equivalent fractions inverse function area of a triangle elimination method story problems standard deviation integral ratios simplify systems of equations containing three variables width of a rectangle percentages area of a circle circumference of a circle place value solving triangles parallel lines mathematical proofs solving linear equations 5th grade math mixed numbers to improper fractions scientific notation problems quadratic functions number of sides of a polygon length of a rectangle statistics zeros of a function prime factorization percents algebra 1 evaluating functions derivative of a function equation area of a rectangle lowest common denominator solving systems of equations by graphing integers algebra 2 diameter of a circle dividing polynomials vertex of a parabola calculus problem perpendicular lines combining like terms complex numbers geometry word problems converting fractions to decimals finding the nth term range of a function 4th grade math greatest to least ordered pairs functions radius of a circle least common denominator slope unit conversion solve for y calculators solving radical equations calculate distance between two points area word problems equation of a tangent line multiplying fractions chemistry binomial expansion place values absolute value round to the nearest tenth common denominator sets set builder notation please help me to answer this step by step significant figures simplifying radicals arithmetic sequences median age problem trigonometry graphing derivatives number patterns adding fractions radicals midpoint of a line roots of polynomials product of two consecutive numbers limits decimals compound interest please help pre-algebra problems divisibility rules graphing functions subtracting fractions angles numbers discrete mathematics volume of a cylinder simultaneous equations integration probability of an event comparing decimals factor by grouping vectors percentage expanded forms rational irrational numbers improper fractions to mixed numbers algebra1 matrices logarithms how to complete the square mean statistics problem analytic geometry geometry problem rounding decimals 5th grade math problems solving equations with variables solving quadratic equations by completing the square simplifying trigonometric equation using identities
87,439 questions
99,037 answers
2,421 comments
16,934 users