solve using variation of parameters
in Other Math Topics by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

∫cosec(x)dx=∫(cot(x)+cosec(x))cosec(x)dx/(cot(x)+cosec(x)),

∫cosec(x)dx=-∫(-cot(x)-cosec(x))cosec(x)dx/(cot(x)+cosec(x)),

∫cosec(x)dx=-∫(-cot(x)cosec(x)-cosec2(x))dx(cosec(x)+cot(x)).

∫cosec(x)dx=-ln|cosec(x)+cot(x)|+C, where C is integration constant.

cosec(x)+cot(x)=1/sin(x)+cos(x)/sin(x)=(1+cos(x))/sin(x).

-ln|cosec(x)+cot(x)|=ln|1/(cosec(x)+cot(x))|=ln|sin(x)/(1+cos(x))|=ln|sin(x)|-ln|1+cos(x)|.

d3y/dx3+dy/dx=cosec(x)=

(d/dx)(d2y/dx2+y)=(d/dx)(∫cosec(x)dx), then integrating:

d2y/dx2+y=f(x), where f(x)=ln|sin(x)|-ln|1+cos(x)|+C.

d2y/dx2+y=0 has the solution yc (characteristic): Asin(x)+Bcos(x), where A and B are constants.

Now we need the particular solution yp.

y=yc+yp. Here we start using variation of parameters.

We already have yc=Asin(x)+Bcos(x), now we use y1=sin(x) and y2=cos(x), where:

yp=u1sin(x)+u2cos(x). u1 and u2 are functions of x and we find them using Wronskian determinants w, w1, w2, and Cramer's Rule for solving simultaneous equations.

w=

| sin(x)  cos(x) |

| cos(x) -sin(x) | = -sin2(x)-cos2(x)=-1.

We have here y1 and y2 in the first row and their respective derivatives in the second row.

Now Cramer's Rule introducing f(x). (See above for definition of f(x).)

w1=

|   0   cos(x) |

| f(x) -sin(x) | = -f(x)cos(x).

w2=

| sin(x)    0  |

| cos(x) f(x) | = f(x)sin(x).

u1'=w1/w=f(x)cos(x); u2'=w2/w=-f(x)sin(x). Integrate to find u1 and u2:

u1=∫(ln|sin(x)|-ln|1+cos(x)|+C)cos(x)dx=∫(ln|sin(x)|cos(x)dx-∫ln|1+cos(x)|cos(x)dx+C∫cos(x)dx;

u2=∫(-ln|sin(x)|+ln|1+cos(x)|-C)sin(x)dx=∫(-ln|sin(x)|sin(x)dx+∫ln|1+cos(x)|sin(x)dx-C∫sin(x)dx.

Consider the integrals separately: u1=I+J+K, u2=L+M+N.

I=∫(ln|sin(x)|cos(x)dx. Let u=ln|sin(x)|, then eu=sin(x), eudu=cos(x)dx.

I=∫ueudu; let p=u, then dp=du; let dq=eudu, then q=eu (integration by parts).

I=pq-∫qdp, that is:

I=ueu-∫eudu=ueu-eu=sin(x)ln|sin(x)|-sin(x).

K=C∫cos(x)dx=Csin(x); N=-C∫sin(x)dx=Ccos(x).

M=∫ln|1+cos(x)|sin(x)dx. Let u=ln|1+cos(x)|, then eu=1+cos(x), eudu=-sin(x)dx.

So M=-ueu+eu=-(1+cos(x))ln|1+cos(x)|+1+cos(x).

J=-∫ln|1+cos(x)|cos(x)dx and L=∫(ln|sin(x)|(-sin(x))dx remain to be integrated.

For J, let u=ln|1+cos(x)|, then du=-sin(x)dx/(1+cos(x)); let dv=cos(x)dx, then v=sin(x).

J=-sin(x)ln|1+cos(x)|-∫sin2(x)dx/(1+cos(x))=

-sin(x)ln|1+cos(x)|-∫(1-cos2(x))dx/(1+cos(x))=

-sin(x)ln|1+cos(x)|-∫(1-cos(x)dx=

-sin(x)ln|1+cos(x)|-x+sin(x).

For L, let u=ln|sin(x)|, then du=cot(x)dx; let dv=-sin(x)dx, then v=cos(x).

L=uv-∫vdu, that is:

L=cos(x)ln|sin(x)|-∫cos2(x)dx/sin(x)=cos(x)ln|sin(x)|-∫(1-sin2(x))dx/sin(x),

L=cos(x)ln|sin(x)|-∫(cosec(x)-sin(x))dx,

L=cos(x)ln|sin(x)|+ln|cosec(x)+cot(x)|-cos(x)=cos(x)ln|sin(x)|+ln|1+cos(x)|-ln|sin(x)|-cos(x).

u1=I+J+K, u2=L+M+N.

u1=sin(x)ln|sin(x)|-sin(x)-sin(x)ln|1+cos(x)|-x+sin(x)+Csin(x),

u1=sin(x)ln|sin(x)|-sin(x)ln|1+cos(x)|-x+Csin(x).

u2=cos(x)ln|sin(x)|+ln|1+cos(x)|-ln|sin(x)|-cos(x)-(1+cos(x))ln|1+cos(x)|+1+cos(x)+Ccos(x),

u2=cos(x)ln|sin(x)|-ln|sin(x)|-cos(x)ln|1+cos(x)|+1+Ccos(x).

yp=u1sin(x)+u2cos(x)=

sin2(x)ln|sin(x)|-sin2(x)ln|1+cos(x)|-xsin(x)+Csin2(x)+

cos2(x)ln|sin(x)|-cos2(x)ln|1+cos(x)|-cos(x)ln|sin(x)|+cos(x)+Ccos2(x)=

ln|sin(x)|-ln|1+cos(x)|-xsin(x)-cos(x)ln|sin(x)|+cos(x)+C.

The full solution is:

y=Asin(x)+Bcos(x)+ln|sin(x)|-ln|1+cos(x)|-xsin(x)-cos(x)ln|sin(x)|+C. (A cos(x) term has been absorbed into the constant B.)

by Top Rated User (1.1m points)

Related questions

1 answer
1 answer
asked Aug 17, 2013 in Calculus Answers by karmveer Level 1 User (120 points) | 557 views
1 answer
0 answers
asked Aug 29, 2013 in Calculus Answers by pritee | 1.1k views
0 answers
asked Jan 9, 2012 in Calculus Answers by anonymous | 772 views
1 answer
1 answer
asked Jul 6, 2019 in Other Math Topics by Divya | 2.5k views
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,542 questions
99,771 answers
2,417 comments
507,061 users