Pierre De Fermats last theorem [special case of his theorem, which is that there is no non-trivial solution to x^n+y^n=z^n for positive integers x, y, z and n, where n>2----note added by Rod].

in Other Math Topics by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

 

x^3+y^3=z^3⇒(x+y)(x^2-xy+y^2)=z^3. If x+y=z, then x^2-xy+y^2=z^2; but that implies x^2-xy+y^2=x^2+2xy+y^2, and  3xy=0, which is the trivial solution and is disallowed by the theorem. So x+y needs to be an integer factor of z, x+y=az and x^2-xy+y^2=z^2/a; or x+y=az^2 and the quadratic x^2-xy+y^2=z/a. This respectively implies that (1) x^2-xy+y^2=(x^2+2xy+y^2)/a^2; or (2) x^2-xy+y^2=sqrt((x+y)/a)/a.

(1) The equation becomes x^2(a^2-1)-xy(a^2+2)+y^2(a^2-1)=0 for a>1, and, dividing through by a^2-1 we get:

x^2-xy(a^2+2)/(a^2-1)+y^2=0. Solve this by completing the square:

(x-y(a^2+2)/(2(a^2-1)))^2+y^2-y^2((a^2+2)/(2(a^2-1))^2=0.

x-y(a^2+2)/(2(a^2-1))=+ysqrt((a^2+2)^2-4(a^2-1)^2)/(2(a^2-1))=

+ysqrt((a^2+2+2a^2-2)(a^2+2-2a^2+2))/(2(a^2-1))=+ysqrt(3a^2(4-a^2))/(2(a^2-1))=

+aysqrt(3(4-a^2))/(2(a^2-1)).

The square root cannot be negative and a>1, so a=2 and x=y(a^2+2)/(2(a^2-1))=6y/6=y. But this solution is based on the initial assumption that the quadratic could be equal to z/a. Clearly x^3+y^3=2x^3 cannot be z^3 where z is an integer. So the assumption (supposed condition) is false and there are no solutions under (1).

(2) If x^2-xy+y^2=z/a and we write z/a=k, where k is a positive integer, then we can rewrite the quadratic:

(x-y/2)^2-y^2/4+y^2=k, so (x-y/2)^2=k-(3/4)y^2. If y is an even integer y=2w where w is an integer. Then (x-w)^2=k-3w^2. So (x-w)=sqrt(k-3w^2). The left-hand side is an integer so the right-hand side must also be an integer, and this can only happen if k-3w^2=p^2 where p is an integer >0. So k=p^2+3w^2. x=w+p; y=2w; z=a(p^2+3w^2). We have the three variables in terms of three parameters, a, p and w. For the special case of p=0, we can see the effect of substituting the parametrised values into the quadratic: w^2-2w^2+4w^2=3w^2 and into x+y=3w, the product of which is 9w^3=x^3+y^3. This sum cannot be a perfect cube because 9 is not a perfect cube, therefore there are no solutions to the cubic equation when p=0.

When p>0, x+y=3w+p and the quadratic is w^2+2pw+p^2-2w^2T2wp+4w^2=3w^2+p^2. The product is (3w+p)(3w^2+p^2)=9w^3+3wp^2+3pw^2+p^3=(2w)^3+(p+w)^3=y^3+x^3.


If y is odd y=2v-1 where integer v>0 and (x-v+(1/2))^2=k-(3/4)(4v^2-4v+1)=k-3v(v-1)-3/4; (x-v)^2+x-v+1=k-3v(v-1)

More...

by Top Rated User (1.1m points)

Related questions

1 answer
asked Aug 14, 2013 in Algebra 1 Answers by cece | 1.1k views
1 answer
1 answer
1 answer
asked Apr 10, 2013 in Geometry Answers by anonymous | 1.1k views
1 answer
1 answer
asked Mar 5, 2013 in Algebra 1 Answers by anonymous | 1.1k views
1 answer
asked Mar 22, 2011 in Geometry Answers by anonymous | 1.9k views
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,542 questions
99,805 answers
2,417 comments
523,374 users