it is a hard problem!
in Other Math Topics by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

5 Answers

S=1/2+1/4+1/8+...+1/8192.

S/2=1/4+1/8+1/16+...+1/8192+1/16384.

S-S/2=S/2=1/2-1/16384=8192/16384-1/16384=8191/16384.

So S=2×8191/16384=8191/8192.
by Top Rated User (1.1m points)

Let the given sum be $S$. By inspection, we find that $2^6 \equiv 64 \equiv -1 \pmod{13}$, so $2^{-6} \equiv (-1)^{-1} \equiv -1 \pmod{13}$. It follows that $2^{-5} \equiv 2 \cdot 2^{-6} \equiv 2 \cdot -1 \equiv -2 \pmod{13}$, and that $2^{-4} \equiv -4 \pmod{13}$, and so forth. Thus,$$S \equiv -2^5 - 2^4 - 2^3 - 2^2 - 2 - 1 \equiv -63 \equiv \boxed{2} \pmod{13}$$

Solution 2:

Let the given sum be $S$. The derivation of the geometric series formula remains the same if we consider the result $\mod{13}$. In particular,\begin{align*}S &\equiv 2^{-1} \cdot (1 + 2^{-1} + \cdots + 2^{-5}) \pmod{13} \\ 2^{-1} S &\equiv 2^{-1} \cdot (2^{-1} + \cdots + 2^{-5} + 2^{-6}) \pmod{13}.\end{align*}Subtracting the two yields that$$(1 - 2^{-1}) \cdot S \equiv 2^{-1} \cdot (1 - 2^{-6}) \pmod{13}.$$Since $2 \cdot (1-2^{-1}) \equiv 2 - 1 \equiv 1 \pmod{13}$, it follows that $1-2^{-1} \equiv 2^{-1} \pmod{13}$, so$$S \equiv 2^{-1} \cdot \frac{1 - 2^{-6}}{1-2^{-1}} \equiv 1 - 2^{-6} \equiv \frac{63}{64} \equiv \frac{-2}{-1} \equiv \boxed{2} \pmod{13}.$$*AoPS answer

by
The answer is 2
by
Let the given sum be $S$. By inspection, we find that $2^6 \equiv 64 \equiv -1 \pmod{13}$, so $2^{-6} \equiv (-1)^{-1} \equiv -1 \pmod{13}$. It follows that $2^{-5} \equiv 2 \cdot 2^{-6} \equiv 2 \cdot -1 \equiv -2 \pmod{13}$, and that $2^{-4} \equiv -4 \pmod{13}$, and so forth. Thus,$$S \equiv -2^5 - 2^4 - 2^3 - 2^2 - 2 - 1 \equiv -63 \equiv \boxed{2} \pmod{13}$$
Solution 2:
Let the given sum be $S$. The derivation of the geometric series formula remains the same if we consider the result $\mod{13}$. In particular,\begin{align*}S &\equiv 2^{-1} \cdot (1 + 2^{-1} + \cdots + 2^{-5}) \pmod{13} \\ 2^{-1} S &\equiv 2^{-1} \cdot (2^{-1} + \cdots + 2^{-5} + 2^{-6}) \pmod{13}.\end{align*}Subtracting the two yields that$$(1 - 2^{-1}) \cdot S \equiv 2^{-1} \cdot (1 - 2^{-6}) \pmod{13}.$$Since $2 \cdot (1-2^{-1}) \equiv 2 - 1 \equiv 1 \pmod{13}$, it follows that $1-2^{-1} \equiv 2^{-1} \pmod{13}$, so$$S \equiv 2^{-1} \cdot \frac{1 - 2^{-6}}{1-2^{-1}} \equiv 1 - 2^{-6} \equiv \frac{63}{64} \equiv \frac{-2}{-1} \equiv \boxed{2} \pmod{13}.$$
by

2^6 ≡ 64 ≡ -1 (mod 13),

2^(-6) ≡ (-1)^(-1) ≡ -1 (mod 13),

2^(-5) ≡ 2 • 2^(-6) ≡ 2 • -1 ≡ -2 (mod 13),

2^(-4) ≡ 2^2 • 2^(-6) ≡ 4 • -1 ≡ -4 (mod 13).

Finally, - 2^5 - 2^4 - 2^3 - 2^2 - 2^1 - 2^0 ≡ -63 ≡ 2 (mod 13). (So it’s 2.)

by

Related questions

2 answers
1 answer
asked Nov 14, 2012 in Word Problem Answers by anonymous | 1.2k views
1 answer
asked Aug 19, 2013 in order of operations by anonymous | 599 views
2 answers
asked May 13, 2016 in Other Math Topics by Mathical Level 10 User (57.4k points) | 1.3k views
1 answer
asked Oct 30, 2015 in Other Math Topics by Yoda Justice | 623 views
1 answer
1 answer
asked Oct 2, 2015 in Other Math Topics by Mathical Level 10 User (57.4k points) | 881 views
1 answer
asked Jan 12, 2014 in Other Math Topics by anonymous | 1.2k views
3 answers
asked Sep 20, 2013 in Algebra 1 Answers by anonymous | 906 views
1 answer
asked Mar 25, 2020 in Pre-Algebra Answers by KingJaveek | 533 views
1 answer
asked Oct 3, 2017 in Pre-Algebra Answers by Mathical Level 10 User (57.4k points) | 355 views
1 answer
asked Oct 5, 2015 in Word Problem Answers by Mathical Level 10 User (57.4k points) | 725 views
1 answer
asked Oct 5, 2015 in Word Problem Answers by Mathical Level 10 User (57.4k points) | 708 views
1 answer
asked Oct 3, 2015 in Word Problem Answers by Mathical Level 10 User (57.4k points) | 839 views
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,540 questions
99,812 answers
2,417 comments
523,775 users