finding the inverse function
in Calculus Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

f(x)=4x3+3x2+6x+7, f'(x)=6(2x2+x+1).

Let y=f'(x), then x=f'-1(y), so if y=a, x=f'-1(a), a=f'(x)=6(2x2+x+1),

2x2+x+1=⅙a,

x2+½x=a/12-½,

x2+½x+1/16=a/12-8/16+1/16=a/12-7/16,

(x+¼)2=(1/16)(4a/3-7),

x=±¼√(4a/3-7)-¼.

When a=7, x=±¼√(28/3-7)-¼,

x=±¼√(7/3)-¼.

Therefore, since x=f'-1(a), f'-1(a)=±¼√(7/3)-¼=(-3±√21)/12.

f'-1(a)=(-3±√21)/12 (0.1319 or -0.6319 approx).

The graph in red represents part of f(x), while f'(x) is shown in blue.

The green verticals represent the two solutions for f'-1(a) when a=7.

NOTE

If f-1(a) had been required, let y=f(x), so x=f-1(a) when y=a=7, then:

a=f(x)=4x3+3x2+6x+7,

4x3+3x2+6x+7-a=0, 4x3+3x2+6x=0 when a=7, x(4x2+3x+6)=0⇒x=0 because the quadratic has only complex solutions.

Therefore x=f-1(a)=0 (one real solution).

by Top Rated User (1.1m points)

Related questions

1 answer
asked Oct 26, 2020 in Calculus Answers by anonymous | 528 views
2 answers
asked Jun 10, 2012 in Calculus Answers by anonymous | 3.0k views
1 answer
asked Jun 10, 2012 in Calculus Answers by anonymous | 987 views
1 answer
asked Oct 8, 2013 in Other Math Topics by anonymous | 521 views
1 answer
asked Sep 14, 2012 in Calculus Answers by anonymous | 629 views
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,544 questions
99,732 answers
2,417 comments
484,632 users