log(5x)=xlog(5); log(5y)=ylog(5).
The first two terms can be combined: ½(x+y)log(5)=log√5x+y.
"log5(x+1)" could mean
(1) log(5(x+1)), 2log(5(x+1))=log(52(x+1)2)=log(25(x+1)2); or
(2) 2log(5)(x+1)=(x+1)log(25)=log(25x+1)=log(52(x+1))=log(52x+2)
Therefore the whole expression becomes:
(1) log(√5x+y/(25(x+1)2)), log(5½x+½y/(52(x+1)2)), log(5½x+½y-2/(x+1)2;
(2) log(√5x+y/52x+2), log(5½x+½y-2x-2), log(5½y-(3/2)x-2), log√(5y-3x-4).