Pete challenges his friend Jill to find two consecutive odd integers that have the following relationship.  The product of the integers is 3 times the sum of the integers plus 6.  Determine if it is possible to find two such integers.
in Algebra 2 Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

Two consecutive odd integers can be represented by 2x-1 and 2x+1. Their product is 4x^2-1 and their sum is 4x. So, 4x^2-1=3(4x+6)=12x+18. This is the quadratic: 4x^2-12x-19=0. This has no rational solutions.

Or, reading the question slightly differently: 4x^2-1=12x+6, so 4x^2-12x-7=0.

In the second case, we can factorise: (2x-7)(2x+1)=0, so x=3.5 or -0.5. The two integers are: 6 and 8, or -2 and 0. None of these are odd, so it isn't possible to find two consecutive odd integers.

Why did I think there were two interpretations of the question? "3 times the sum of the integers plus 6" is ambiguous:  is it 3(sum+6) or 3*sum+6? Judging by the result, it was the latter.
by Top Rated User (1.1m points)

Related questions

1 answer
1 answer
1 answer
1 answer
asked Mar 5, 2014 in Other Math Topics by anonymous | 823 views
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,542 questions
99,806 answers
2,417 comments
523,416 users