Technical question, plz give me solution.
in Geometry Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

Draw the base of the triangle AC and mark its midpoint, D. Draw a perpendicular from D. Somewhere along the perpendicular will be the circumcentre, that is, the centre of the circle that circumscribes the triangle ABC. 

The position of vertex B has to be such that the perpendicular bisector of AB meets the perpendicular bisector of AC at X, and the perpendicular from vertex C on to AB meets the perpendicular from vertex B on to AC at Y, such that XY is parallel to AC. This is another way of framing the question. No other construction lines are required because the missing perpendiculars are superfluous to solving the problem.

Represent the problem graphically. Plot the points A(0,0), B(p,q), C(t,0) where p and q are to be determined and t is an arbitrary constant t=AC. Midpoint of AC is N(t/2,0); midpoint of AB is M(p/2,q/2). AB is a segment of the line y=qx/p. The equation of the bisector of AB: -p/q is its gradient, so y=-px/q+c, where c is found by plugging in M: q/2=-p^2/2q+c, c=q/2+p^2/2q and the perpendicular bisector is a segment of y=q/2+p^2/2q-px/q. Therefore, the coords of X are where this line meets the perpendicular bisector of AC, which is a segment of the line x=t/2. The intersection is X(t/2,q/2+p^2/2q-pt/2q).

Now we need to find Y, which must lie on the line x=p, because this is the perpendicular from vertex B on to AC. The perpendicular from vertex C on to AB is parallel to the perpendicular bisector of AB so has the same gradient: -p/q. The equation of the perpendicular from C is y=-px/q+k, where k is found by plugging in C(t,0): 0=-pt/q+k, k=pt/q and y=-px/q+pt/q=p(t-x)/q.

The point Y is therefore Y(p,p(t-p)/q).

XY is parallel to AC, which means their y coord is the same: q/2+p^2/2q-pt/2q=p(t-p)/q; q^2+p^2-pt=2p(t-p); q^2+3p^2=3pt; q^2=3p(t-p).

Also, tanA=q/p and tanC=q/(t-p), so tanA*tanC=q^2/(pt-p^2)=3p(t-p)/(p(t-p))=3.

Note that when tanA=tanB=sqrt(3), B is (1/2,sqrt(3)/2), the triangle is equilateral and XY=0 because the circumcentre and orthocentre coincide.

 

by Top Rated User (1.1m points)
reshown by

Related questions

Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,542 questions
99,804 answers
2,417 comments
522,425 users