AC=√(AB^2+BC^2)=√(16+9)=√25=5km. Angle ACW=BAC=arctan(3/4)=36.87º approx. and ACD=40+36.87=76.87º.
Cosine rule: AD^2=5^2+4^2-40cos76.87=31.9135 approx, so AD=5.65km approx.
Sine rule: sinDAC/4=sinACD/AD=0.1724 approx, making sinDAC=0.6896 and DAC=43.59º.
The bearing of D from A is 43.59+36.87=80.46° S of E or N170.46 or 9.54° E of S.
