ascending power using maclaurin's series
in Other Math Topics by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

METHOD 1

The Taylor/Maclaurin series for sin(x)=x-x3/3!+x5/5!-... or ∑(-1)rx2r+1/(2r+1)! for integer r≥0.

The Maclaurin series for cos(x)=1-x2/2!+x4/4!-... or ∑(-1)rx2r/(2r)! for integer r≥0.

Since tan(x)=sin(x)/cos(x)=∑(-1)rx2r+1/(2r+1)!/∑(-1)rx2r/(2r)!.

Let's see what long division looks like:

                           x is the first term of the series for tan(x).

1-x2/2!+x4/4!-... | x-x3/3!+x5/5!-...

                           x-x3/2!+x5/4!-...

                              -x3(⅙-½)+x5(1/120-1/24)+...+(-1)rx2r+1(1/(2r+1)!-1/(2r)!)+... (the first difference).

Coefficient of x2r+1 is (-1)r(1/(2r+1)!-1/(2r)!)=(-1)r+1/[(2r-1)!(2r+1)] for r≥1.

Method 1 is too complicated, but is still useful for a fixed number of terms. See later for a formula for the nth term of an infinite series for tan(x).

METHOD 2

f(x)=tan(x), successive derivatives will be designated in the form f(n), where n=1 implies f'(x) and f or f(0) imply f(x).

Also f0(n) implies f(n)(0) and f0 implies f(0).

f(1)=sec2(x)=1+tan2(x)=1+f2

f(2)=2ff(1),

f(3)=2ff(2)+2(f(1))2,

f(4)=(2ff(3)+2f(1)f(2))+4f(1)f(2)=2ff(3)+6f(1)f(2),

f(5)=2(ff(4)+f(1)f(3))+6(f(1)f(3)+(f(2))2)=2ff(4)+8f(1)f(3)+6(f(2))2,

f(6)=2(ff(5)+f(1)f(4))+8(f(1)f(4)+f(2)f(3))+12f(2)f(3)=2ff(5)+10f(1)f(4)+20f(2)f(3),

f(7)=2(ff(6)+f(1)f(5))+10(f(1)f(5)+f(2)f(4))+20(f(2)f(4)+(f(3))2)=2ff(6)+12f(1)f(5)+30f(2)f(4)+20(f(3))2,

f(8)=2(ff(7)+f(1)f(6))+12(f(1)f(6)+f(2)f(5))+30(f(2)f(5)+f(3)f(4))+40f(3)f(4)=2ff(7)+14f(1)f(6)+42f(2)f(5)+70f(3)f(4),

 f(9)=2(ff(8)+f(1)f(7))+14(f(1)f(7)+f(2)f(6))+42(f(2)f(6)+f(3)f(5))+70(f(3)f(5)+(f(4))2),

f(9)=2ff(8)+16f(1)f(7)+56f(2)f(6)+112f(3)f(5)+70(f(4))2, ...

f0=0, f0(1)=1, so f0(2)=0, f0(3)=2, f0(4)=0, so f0(2n)=0 for all integer n≥0.

This method of calculating successive derivatives is easier than the long division method and is more closely connected to the Taylor series method. Furthermore, a pattern is emerging for the terms of the derivatives.

n (odd) f0(n) an (Taylor/Maclaurin)

    1         1                  1

    3         2               2/3!=⅓

    5        16           16/5!=2/15

    7       272        272/7!=17/315

    9     7936      7936/9!=62/2835

All even derivatives: f0, f0(2), etc., are zero, so any terms containing them can be ignored.

So tan(x)=x+x3/3+2x5/15+17x7/315+62x9/2835+...

To confirm this we can use Method 1: (x-x3/3!+x5/5!-x7/7!+x9/9!)/(1-x2/2!+x4/4!-x6/6!+x8/8!):

                                          x+x3/3+2x5/15+17x7/315+62x9/2835

1-x2/2!+x4/4!-x6/6!+x8/8! | x-x3/3!+x5/5!     -x7/7!        +x9/9!

                                          x-x3/2!+x5/4!-     x7/6!         +x9/8!

                                             x3/3-x5/30    +x7/840       -x9/45360

                                             x3/3-x5/6      +x7/72         -x9/2160   +x11/120960

                                                    2x5/15 -4x7/315      +x9/2268-x11/...

                                                    2x5/15   -x7/15       +x9/180  -x11/...

                                                               17x7/315  -29x9/5670

                                                               17x7/315  -17x9/630  +x11/...

                                                                                 62x9/2835

So this division confirms the results for Method 2. But next we can look at the standard formula for the series.

tan(x)=∑[(-1)n-122n(22n-1)B2n]x2n-1/[2n(2n-1)!], where B2n represents the Bernoulli number.

To find the series for sec2(x) simply differentiate the series for tan(x) wrt x.

sec2(x)=1+x2+⅔x4+17x6/45+62x8/315+...

sec2(x)=∑[(-1)n-122n(22n-1)B2n]x2n-2/[2n(2n-2)!].

by Top Rated User (1.1m points)

Space for answers on this website is restricted (12000 HTML characters maximum), but there is sufficient information in the details here to continue expansion of the derivatives in similar fashion, or follow up Bernouilli's number. There are also websites where the expansion of tan(x) includes more terms than the ones given here. Suffice it to say that there is no easy way of expressing the nth coefficient of the series.

Related questions

1 answer
asked May 18, 2014 in Calculus Answers by Manoj Kumar | 1.4k views
1 answer
1 answer
asked Nov 10, 2011 in Calculus Answers by anonymous | 1.2k views
1 answer
asked Mar 29, 2011 in Algebra 1 Answers by anonymous | 1.9k views
1 answer
1 answer
asked May 2, 2013 in Algebra 1 Answers by anonymous | 874 views
1 answer
1 answer
1 answer
0 answers
1 answer
asked Sep 15, 2013 in Calculus Answers by Kiran7 Level 1 User (160 points) | 1.9k views
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,542 questions
99,806 answers
2,417 comments
523,509 users