For a general function f(x) the expansion is n=0∑n=∞f(n)(a)(x-a)n/n!, where a is the point of differentiation.
This expands to f(a)+f'(a)(x-a)/1!+f"(a)(x-a)2/2!+... ad infinitum.
When f(x)=(x+3)/((x-1)(x-4)) we need to differentiate f an indefinite number of times.
f(2)=5/((1)(-2))=-2.5.
Let u=x+3 and v=(x-1)(x-4)=x2-5x+4,
then du/dx=1 and dv/dx=2x-5.
df/dx=(vdu/dx-udv/dx)/v2=(x2-5x+4-(x+3)(2x-5))/(x2-5x+4)2,
f'(x)=df/dx=(x2-5x+4-2x2-x+15)/(x2-5x+4)2=(-x2-6x+19)/(x2-5x+4)2.
f'(2)=(-4-12+19)/(4-10+4)2=3/4.
This makes the next term in the series 3(x-2)/4.
Using a similar technique f"(x)=2(x3+9x2-57x+83)/(x2-5x+4)3,
so f"(2)=2(8+36-114+83)/(4-10+4)3=-13/4, making the next term -13(x-2)2/8.
The first three terms are -5/2+3(x-2)-13(x-2)2/8. To get more terms keep differentiating and then plugging in x=2 to find f(n)(2).