What is the equation of a Standard Rect.Hyperbola given its vertices are at 5,7 and 3,-1/Also find its asymptots.
in Geometry Answers by Level 1 User (120 points)

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

this equation expands toThe vertices share no common coordinate so the hyperbola cannot be orientated in the usual x-y form. The hyperbola must therefore be skew (tilted axis) and the line joining the vertices is sloping. This line is given by the equation y=((7+1)/(5-3))x+c where c is to be found. y=4x+c, and -1=12+c, plugging in (3,-1). c=-13. Therefore the axis of the hyperbola is y=4x-13.

The centre or origin of the hyperbola lies midway between them at ((1/2)(5+3),(1/2)(7-1))=(4,3) and the equation of the conjugate axis is given by y=-x/4+k where k is found by plugging in the midpoint: 3=-4/4+k, so k=4 and y=4-x/4 is the equation of the conjugate axis.

Let's define the axes of the hyperbola as X and Y instead of x and y. We can place the centre of the hyperbola at (0,0) in the X-Y plane so that in this plane the equation of the hyperbola is Y^2/A^2-X^2/B^2=1. The vertices are found by finding Y when X=0, so (0,A) and (0,-A) are the vertices. The asymptotes are given by (Y/A+X/B)(Y/A-X/B)=0. So Y=AX/B and Y=-AX/B are their equations.

The distance between the vertices is 2A so we can work this out from the x-y coordinates of the vertices using Pythagoras' Theorem: 2A=sqrt((7+1)^2+(5-3)^2)=sqrt(68). A=sqrt(68)/2, A^2=68/4=17.

Since the hyperbola is rectangular, B=A, and the equation of the hyperbola is Y^2-X^2=17. The asymptotes then become Y=X and Y=-X.

Now we have to transform X-Y to x-y, so that the equation can be expressed in the x-y plane. We use geometry and trigonometry  for this.

Let O'(4,3) be the location of the origin of the X-Y plane. Let P(x,y) be any point. In the X-Y plane this is P'(X,Y). Join O'P'=O'P. This line can be represented in both reference frames. O'P^2=X^2+Y^2=(x-4)^2+(y-3)^2 by Pythagoras.

The gradient of the Y axis with respect to the x-y frame is 4, and we can represent this as tan(w) so w=tan^-1(4) or tan(w)=4; sin(w)=4/sqrt(17); cos(w)=1/sqrt(17). The angle z that O'P makes with the line y=3 is given by tan(z)=(y-3)/(x-4). sin(z)=(y-3)/O'P; cos(z)=(x-4)/O'P. Let v=90-w. sin(v+z)=Y/O'P; cos(v+z)=X/O'P. v+z=90-w+z=90-(w-z), so sin(v+z)=cos(w-z)=cos(w)cos(z)+sin(w)sin(z)=(x-4)/(O'Psqrt(17))+4(y-3)/(O'Psqrt(17))=(x+4y-16)/(O'Psqrt(17)).

cos(v+z)=sin(w-z)=sin(w)cos(z)-cos(w)sin(z)=4(x-4)/(O'Psqrt(17))-(y-3)/(O'Psqrt(17))=(4x-y-13)/(O'Psqrt(17)).

Y=O'P*sin(v+z)=(x+4y-16)/sqrt(17); X=O'P*cos(v+z)=(4x-y-13)/sqrt(17).

So P maps to the x-y plane using these transformations.

Y^2-X^2=17 becomes (x+4y-16)^2-(4x-y-13)^2=289, the equation of the hyperbola.

This expands to x^2+8x(y-4)+16y^2-128y+256-(16x^2-8x(y+13)+y^2+26y+169)=289;

-15x^2+16xy+15y^2+72x-154y-202=0.

The asymptotes are x+4y-16+4x-y-13=0; 5x+3y-29=0 and x+4y-16-4x+y+13=0; 5y-3x-3=0.

by Top Rated User (1.1m points)

Related questions

1 answer
1 answer
asked Oct 14, 2014 in Algebra 2 Answers by jackie | 685 views
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,544 questions
99,732 answers
2,417 comments
483,188 users