Let the roots be w, y, z.
(x-w)(x-y)(x-z)=(x-w)(x2-x(y+z)+yz)=x3-x2(y+z)+xyz-wx2+wx(y+z)-wyz=
x3-x2(w+y+z)+x(yz+wy+wz)-wyz=x3-4x2+x+c=0.
Therefore, w+y+z=4, yz+wy+wz=1, c=-wyz, by matching coefficients.
42=16=(w+y+z)2=(w+(y+z))2=w2+2w(y+z)+(y+z)2=w2+2w(y+z)+y2+2yz+z2=
w2+y2+z2+2(wy+wz+yz)=w2+y2+z2+2.
Therefore, w2+y2+z2+2=16, w2+y2+z2=14, which is the sum of the squares of the roots.