This is from my solid mensuration class
in Word Problem Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

The surface area of a cone of slant length L and base radius R is πRL. This doesn't include the base area of πR^2. So the surface area of the frustum is π(R1L1-R2L2) where R1, R2 are the top and base radii and L1, L2 are the full slant lengths of the cones. It's assumed that L1=7 for the right cone. We know that the ratio R2/R1=3/7. This ratio applies to L2/L1 and the heights of the nested cones H1, H2.

So we can substitute R1=7, R2=3, L1=7, L2=3L1/7=3. The surface area of the frustum without the extra material for the seam is π(49-9)=40π. If we assume the extra material for the seam forms a truncated sector with a base extension of ½", we need to calculate how much material this is.

The sector length at the base of the original cone is S=Rø where ø is the angle of the sector. S=½" and R=R1=7 so ø=1/14. The area of the sector is øR1^2=49/14. For the smaller cone the sector area is øR2^2=9/14 and the difference is the area of extra material we need=40/14=20/7 sq in. Therefore the total amount of material is 40π+20/7 sq in=128.52 sq in.

by Top Rated User (1.1m points)

Related questions

1 answer
asked Mar 7, 2013 in Geometry Answers by anonymous | 1.5k views
1 answer
1 answer
1 answer
1 answer
asked Apr 10, 2013 in Geometry Answers by anonymous | 1.8k views
1 answer
asked Apr 10, 2013 in Algebra 2 Answers by anonymous | 931 views
1 answer
asked Mar 16, 2013 in Word Problem Answers by anonymous | 2.8k views
1 answer
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,542 questions
99,804 answers
2,417 comments
523,237 users