(x^2)/(a^2) + (y^2)/(b^2) = 1

and

(x^2)/(a^2-2b^2) - (y^2)/(b^2) = 1 where a > b(sqrt(2))

1. Show that the ellipse and the hyperbola are confocal

2. At how many points do these curves intersect?

3. Let e and E be the eccentricities of this ellipse and hyperbola, respectively. Also, let C^2 = a^2 –b^2 . Show that the coordinates of the point in the first quadrant where the curves intersect are given by x= (C)/(eE) and y=(b^2)/(C)
in Calculus Answers by

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
To avoid this verification in future, please log in or register.

1 Answer

    1    For the ellipse the focus is given by (f,0) where f=√a²-b². For the hyperbola the focus is (f,0) where f=√(a²-2b²)+b²=√a²-b², as for the ellipse, so both conics are confocal.

    2    If we write the equation for the ellipse y²/b²=1-x²/a² and for the hyperbola y²/b²=x²/(a²-2b²)-1, then we can equate the expressions in x: 1-x²/a²=x²/(a²-2b²)-1. Multiply through by a²(a²-2b²) we get: 2a²(a²-2b²)-x²(a²-2b²)=a²x², from which x²=a²(a²-2b²)/(a²-b²). So x²/a²=(a²-2b²)/(a²-b²) and y²/b²=1-(a²-2b²)/(a²-b²)=b²/(a²-b²) and y=b²/√(a²-b²) [which can also be written b²/C if C²=a²-b²].

There are four points of intersection:

(a√((a²-2b²)/(a²-b²)), b²/√(a²-b²));

(a√((a²-2b²)/(a²-b²)), -b²/√(a²-b²));

(-a√((a²-2b²)/(a²-b²)), b²/√(a²-b²));

(-a√((a²-2b²)/(a²-b²)), -b²/√(a²-b²)).

    3    The first quadrant intercept is at x=a√((a²-2b²)/(a²-b²))=a√(a²-2b²)/C, y=b²/C.

b²=a²(1-e²) for the ellipse, so e=√(a²-b²)/a, and E=√((a²-2b²+b²)/(a²-2b²))=√((a²-b²)/(a²-2b²)) for the hyperbola. Therefore 1/E=√((a²-2b²)/(a²-b²)) and 1/e=a/√(a²-b²).

So 1/eE=a√(a²-2b²)/C²=x/C, therefore x=C/eE. The first quadrant intercept is therefore at x=C/eE and y=b²/C, QED.

 

 

by Top Rated User (1.1m points)

Related questions

1 answer
1 answer
asked May 14, 2018 in Calculus Answers by anonymous | 1.5k views
1 answer
asked Apr 23, 2012 in Calculus Answers by anonymous | 916 views
1 answer
asked May 6, 2013 in Algebra 2 Answers by anonymous | 771 views
1 answer
asked Apr 14, 2013 in Algebra 2 Answers by anonymous | 1.2k views
2 answers
asked Mar 18, 2014 in Algebra 2 Answers by anonymous | 795 views
1 answer
1 answer
asked May 22, 2012 in Algebra 2 Answers by anonymous | 1.5k views
1 answer
asked Mar 19, 2018 in Calculus Answers by anonymous | 938 views
1 answer
Welcome to MathHomeworkAnswers.org, where students, teachers and math enthusiasts can ask and answer any math question. Get help and answers to any math problem including algebra, trigonometry, geometry, calculus, trigonometry, fractions, solving expression, simplifying expressions and more. Get answers to math questions. Help is always 100% free!
87,542 questions
99,804 answers
2,417 comments
522,180 users